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One of the major economic alternatives to experimental toxicity testing is the use of quantitative
structure–activity relationships (QSARs) which are used in formulating regulatory decisions of environ-
mental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals
for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional
(3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices)
descriptors along with physicochemical parameter log Ko/w (n-octanol/water partition coefficient) and
structural descriptors were used as predictor variables. The QSAR models were developed by stepwise
multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and
genetic PLS (G/PLS). All the models were validated internally and externally. Among several models
aphnia magna
hemometric tools
alidation

developed using different chemometric tools, the best model based on both internal and external vali-
dation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8%
leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that
higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage,
hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals.
The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to
achieve better ecotoxicological management and prevent adverse health consequences.
. Introduction

On a global scale, the enormous annoying effect of hazardous
hemicals and pollutants on the ecosystem is an issue of great
oncern considering that though large numbers of chemical com-
ounds are in commercial use, relatively few of these have been
ubjected to adequate assessment for their perilous environmen-
al properties [1]. The global production of chemicals has increased
rom 1 million tons in 1930 to 400 million tons in the 21st century.
round 100,000 different chemicals are registered in the European
arket of which 10,000 are marketed in volumes of more than

0 tons, and a further 20,000 are marketed at 1–10 tons per year

2]. Testing and assessing their risks to human health and the envi-
onment according to the European Commission Directive 67/548
3] are required before marketing in volumes above 10 kg per year.
or higher volumes, more in-depth testing and focusing on long-

∗ Corresponding author. Tel.: +91 98315 94140; fax: +91 33 2837 1078.
E-mail address: kunalroy in@yahoo.com (K. Roy).
URL: http://sites.google.com/site/kunalroyindia (K. Roy).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.12.038
© 2009 Elsevier B.V. All rights reserved.

term and chronic effects are required [3]. In contrast, more than 99%
of the total volumes of all substances in the market are not subject
to the same testing requirements. Some of them have never been
tested at all.

There is an essential need to use computation-based quantita-
tive structure–activity relationship (QSAR) modeling for providing
information about the physicochemical properties of chemicals
and their environmental fate as well as their human health effects
[4]. Advanced predictive models are being designed and tested
by regulatory agencies to assess physical, chemical, and biolog-
ical properties of individual chemical entities using applications
specific for decision-making frameworks in safety assessments.
The use of QSAR modeling for toxicological predictions would
help determine the potential adverse effects of chemical enti-
ties in risk assessment, chemical screening, and priority setting
[5].

In addition, the recent European Union REACH (Registration,

Evaluation and Authorisation of Chemicals) legislation requires
toxicological hazard and risk assessments for all new and existing
chemicals, and QSAR will play an important role in this endeavour
[6]. In the European Union, the use of in silico methods is explicitly
encouraged and even required in the REACH regulation [3], which

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:kunalroy_in@yahoo.com
dx.doi.org/10.1016/j.jhazmat.2009.12.038
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Table 1
Categorical list of descriptors used in the development of QSAR models.

Category of descriptors Name of the descriptors

Topological Balaban (Jx), kappa shape index (1�, 2�, 3�, 1�am, 2�am, 3�am), flexibility (ϕ), subgraph count (SC-0, SC-1, SC-2, SC-3 P, SC-3 C),
connectivity index (0�, 1�, 2�, 3�p, 3�c, 0�v, 1�v, 2�v, 3�v

p, 3�v
c ), Wiener, Zagreb, electrotopological state fragment type (S sCH3,

S ssCH2, S aaCH, S sssCH, S dssC, S aasC, S ssssC, S dsN, S sssN, S sOH, S ddssS, S dO, S ssO, S ssS, S dssS, S sF, S sCl, S sBr)
Structural MW, Rotlbonds, H-bond acceptor, H-bond donor
Electronic Dipole-mag, HOMO, LUMO, Sr
Spatial RadOfGyration, Jurs SASA, Jurs PPSA 1, Jurs PNSA 1, Jurs DPSA 1, Jurs PPSA 2, Jurs PNSA 2, Jurs DPSA 2, Jurs PPSA 3,

Jurs PNSA 3, Jurs DPSA 3, Jurs FPSA 1, Jurs FNSA 1, Jurs FPSA 2, Jurs FNSA 2, Jurs FPSA 3, Jurs FNSA 3, Jurs WPSA 1,
Jurs WNSA 1, Jurs WPSA 2, Jurs WNSA 2, Jurs WPSA 3, Jurs WNSA 3, Jurs RPCG, Jurs RNCG, Jurs RPCS, Jurs RNCS, Jurs TPSA,
Jurs TASA, Jurs RPSA, Jurs RASA, Shadow XY, Shadow XZ, Shadow YZ, Shadow XYfrac, Shadow XZfrac, Shadow YZfrac,
Shadow nu, Shadow Xlength, Shadow Ylength, Shadow Zlength, Area, Vm, Density, PMI mag
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Information indices IC (mean information content index), SI
(bonding information content index).

ame into force from 1st June 2007. This regulation aims, among
ther things, at identifying, evaluating and regulating “Persistent,
ioaccumulating and Toxic substances” effectively [3]. REACH aims
o provide toxicity information for about 30,000 out of the more
han 1,00,000 chemicals listed on the European Inventory of Exist-
ng Commercial Chemical Substances (EINECS), for which there
s insufficient toxicological information on their hazardous prop-
rties. Within REACH, there are requirements to use sufficiently
alidated computational prediction models based on QSAR to fill
n the toxicity data gaps, and thus save time, money and help to
educe the numbers of animals used for experimental testing pur-
oses [3]. Guidelines for QSAR model development and validation
roposed by the Organization for Economic Cooperation and Devel-
pment (OECD) are expected to help increase the acceptability of
SAR models for regulatory purposes [7].

The goal of any ecotoxicological QSAR is to determine the
fficiency of the developed QSAR model for the toxicity of chem-
cals which cover a large structural diversity spanning a variety
f mechanisms of toxic action, including narcoses and elec-
rophilic mechanisms. These chemicals are capable of causing a
ide range of adverse effects including general toxicity, allergenic

eactions, mutagenicity, and carcinogenicity [8]. Dermal, oral, or
espiratory exposures include gastrointestinal, neurological, and
eproductive disorders; liver cirrhosis; hepatitis; cataracts; respira-
ory and skin irritation; nephrotoxicity; and hematological defects
9–11].

Daphnia magna, an important freshwater invertebrate species
n aquatic food webs, has been used world-wide for many years
s a representative test species for ecotoxicological evaluation of
ndustrial chemicals [12–14]. For the development of quantitative
oxicity models also, D. magna has been largely used in recent
ime. Deneer [15] developed QSAR models to accurately predict
he joint acute toxicity of 50 organic chemicals to D. magna. Tao et
l. developed a fragment constant QSAR model for evaluating the
C50 values of 217 organic chemicals to D. magna [16]. Zvinavashe
t al. developed QSAR model for the toxicity of a series of organ-
thiophosphate pesticides to D. magna [17].

Von der ohe et al. [18] developed QSAR for the toxicity of
iverse organic chemicals to D. magna using the octanol–water
artition coefficient (log Ko/w) as a predictor variable. However,
heir statistical analysis was confined to only internal valida-
ion without true external validation. Also, they never used the
otal number of chemicals available for model development. They
eveloped various models with 36, 33,193, 91 and 17 chemi-
als in different runs. In the present paper, we have used the

ame dataset of toxicity of 300 organic chemicals to D. magna
nd developed predictive global QSAR models on the dataset using
D, 3D and combination of both types of descriptors along with

og Ko/w and structural parameters. Sufficient validation strate-
ies (internal and external validations, model randomization)
uctural information content index), CIC (complementary information index), BIC

have been applied to check the predictability of the developed
models.

2. Materials and methods

2.1. Dataset

Three hundred diverse organic chemicals with 48 h D. magna
toxicity in terms of log(LC50) reported by von der Ohe et al. [18]
were used as the model dataset. Toxicity values were multiplied
with −1 and thus log(LC50) values were converted to log(1/LC50)
which was used as the response variables. The data set covers
a log Ko/w (octanol/water partition coefficient) range from −2 to
8 and a toxicity (daphnia) range of 0.46–10.09. In regard to the
chemical domain, the data set includes hydrocarbons, aliphatic
alcohols, phenols, ethers, and esters; anilines, amines, nitriles,
nitroaromatics, amides, and carbamates; urea and thiourea
derivatives; iso-thiocyanates; thiols; phosphorothionate and
phosphate esters; and halogenated derivatives. The list of com-
pounds along with their daphnia toxicity values are shown in
Table S1 in Supplementary Materials.

Three chemicals were excluded from the modeling exercise
due to their atypical nature [diquat (containing quaternary nitro-
gen), mancozeb (metallic compound), dithiocarbamate (undefined
structure in the reference paper)]. So, our modeling work was car-
ried out with 297 organic chemicals.

2.2. Descriptor calculation

We have performed QSAR studies on 297 chemicals reported
by von der Ohe et al. with two-dimensional (topological and infor-
mation) and three-dimensional (spatial and electronic) descriptors
along with log Ko/w and a few structural descriptors. The categori-
cal list [19] of descriptors used in the development of QSAR models
is reported in Table 1. The listed descriptors (Table 1) have been
selected for the present study for their wide spread use and easy
interpretability in terms of mechanism of action and/or physical
meaning.

For the calculation of 3D descriptors, multiple conformations of
each molecule were generated using “optimal search” as the con-
formational search method using Cerius2 version 4.10 software
[19] followed by an energy minimization using smart minimizer
under open force field (OFF) to generate the lowest energy confor-
mation for each structure. The charges were calculated according
to the Gasteiger method.
2.3. Training set selection

In our present work, the total data set (n = 297) was divided
into training set (n = 222) and test (external evaluation) set (n = 75)



3 dous Materials 177 (2010) 344–351

(
o
t
T
M
g
m
u
t

2

s
[
a
c
m

2

s
G
k
o
L
d
m

2

t
s
i
i
o

m
a
[
s
p
g
a
t

o

f

r

a
R

a
a

t
d
a
u
t
t
i

ty
of

d
if

fe
re

n
t

m
od

el
s.

p
to

rs
ap

ar
t

fr
om

lo
g

K
o/

w
an

d
st

ru
ct

u
ra

li
n

d
ic

es
St

at
is

ti
ca

lm
et

h
od

s
M

od
el

n
o.

N
o.

of
d

es
cr

ip
to

rs
LV

s
R

2
Q

2 (L
O

O
)

r2 m
(L

O
O

)
R

2 p
re

d
r2 m

(t
es

t)
r2 m

(o
ve

ra
ll

)

al
+

in
fo

rm
at

io
n

)
St

ep
w

is
e

re
gr

es
si

on
1

11
–

0.
73

6
0.

68
4

0.
53

4
0.

64
3

0.
61

0
0.

54
5

PL
S

2
8

2
0.

69
4

0.
65

0
0.

62
7

0.
67

4
0.

66
4

0.
64

3
G

FA
(l

in
ea

r)
3

7
–

0.
70

0
0.

67
1

0.
52

3
0.

69
1

0.
69

2
0.

54
6

G
FA

(s
p

li
n

e)
4

6
–

0.
70

3
0.

67
3

0.
53

0
0.

63
2

0.
61

6
0.

54
3

G
/P

LS
(l

in
ea

r)
5

6
4

0.
67

5
0.

62
7

0.
60

1
0.

65
2

0.
65

0
0.

61
2

G
/P

LS
(s

p
li

n
e)

6
4

3
0.

65
4

0.
63

7
0.

63
1

0.
63

1
0.

63
4

0.
63

0
le

ct
ro

n
ic

)
St

ep
w

is
e

re
gr

es
si

on
7

9
–

0.
69

1
0.

65
6

0.
51

2
0.

59
3

0.
56

3
0.

51
8

PL
S

8
8

3
0.

66
3

0.
63

0
0.

62
0

0.
62

7
0.

61
2

0.
62

8
G

FA
(l

in
ea

r)
9

7
–

0.
66

3
0.

63
5

0.
50

0
0.

65
8

0.
63

5
0.

52
2

G
FA

(s
p

li
n

e)
10

7
–

0.
70

7
0.

68
0

0.
53

2
0.

64
4

0.
65

0
0.

55
2

G
/P

LS
(l

in
ea

r)
11

5
4

0.
63

1
0.

61
0

0.
60

1
0.

61
3

0.
60

0
0.

61
1

G
/P

LS
(s

p
li

n
e)

12
9

3
0.

66
0

0.
63

2
0.

62
1

0.
61

0
0.

59
7

0.
62

5
lo

gi
ca

l+
in

fo
rm

at
io

n
+

sp
at

ia
l+

el
ec

tr
on

ic
)

St
ep

w
is

e
re

gr
es

si
on

13
[E

q.
(1

)]
12

–
0.

73
8

0.
70

3
0.

55
0

0.
72

1
0.

71
8

0.
57

4
PL

Sa
14

7
3

0.
69

1
0.

66
6

0.
65

6
0.

70
0

0.
66

3
0.

67
3

G
FA

(l
in

ea
r)

15
5

–
0.

68
2

0.
65

7
0.

51
4

0.
66

0
0.

64
8

0.
53

0
G

FA
(s

p
li

n
e)

16
5

–
0.

70
9

0.
69

2
0.

47
9

0.
66

9
0.

67
0

0.
50

7
G

/P
LS

(l
in

ea
r)

17
6

4
0.

67
3

0.
65

0
0.

64
1

0.
65

6
0.

66
5

0.
64

5
G

/P
LS

(s
p

li
n

e)
18

8
4

0.
65

0
0.

61
2

0.
60

0
0.

62
6

0.
61

5
0.

61
1

PL
Sb

,*
19

[E
q.

(2
)]

7
3

0.
69

5
0.

67
7

0.
67

0
0.

74
1

0.
70

7
0.

68
8

le
ct

ed
ba

se
d

on
st

an
d

ar
d

iz
ed

co
ef

fi
ci

en
ts

.
le

ct
ed

ba
se

d
on

V
IP

va
lu

es
.

ri
ab

le
s

se
le

ct
ed

fr
om

st
ep

w
is

e
re

gr
es

si
on

u
si

n
g

co
m

bi
n

ed
se

t
of

d
es

cr
ip

to
rs

.

46 S. Kar, K. Roy / Journal of Hazar

75% and 25% respectively of the total number of compounds) based
n clusters obtained from k-means clustering [20–22] applied on
opological, information and structural indices descriptor matrix.
he details of the clustering method are given in Supplementary
aterials section. The whole data set was clustered into five sub-

roups from each of which 25% of compounds were selected as
embers of the test set. Identification numbers of compounds

nder different clusters are shown in Table S2 in Supplemen-
ary Materials section.

.4. Chemometric tools

Statistical techniques like stepwise regression [23], partial least
quares (PLS) [24,25], genetic function approximation (GFA-MLR)
26] and genetic partial least squares (G/PLS) [19,25,27,28] were
pplied to identify the structural and physicochemical features
ontributing to the toxicity of chemicals. The details of the chemo-
etric tools are discussed in Supplementary Materials.

.5. Software

MINITAB [29] was used for stepwise regression and partial least
quares methods. Cerius2 version 4.10 [19] was used for GFA and
/PLS analyses and descriptor calculation. SPSS [30] was used for
-means cluster analysis and preparation of intercorrelation matrix
f the descriptors. STATISTICA [31] was used to determine the
OO predicted values of training set compounds. Final PLS model
evelopment based on variables selected from stepwise regression
odel was performed using SIMCA-P [32] (vide infra).

.6. Validation methods

The robustness of the models was verified by using different
ypes of validation criteria. For validation of QSAR models, three
trategies [33] were adopted: (1) leave-one-out (LOO) internal val-
dation or cross-validation, (2) validation by dividing the data set
nto training and test compounds, (3) data/model randomization
r Y-scrambling.

The main target of any QSAR modeling is that the developed
odel should be robust enough to be capable of making accurate

nd reliable predictions of biological activities of new compounds
34–36]. So, QSAR models that are developed from a training set
hould be validated using new chemical entities for checking the
redictive capacity of the developed models. The validation strate-
ies check the reliability of the developed models for their possible
pplication on a new set of data, and confidence of prediction can
hus be judged [36].

For all the developed models we have reported the coefficient
f variation (R2), leave-one-out cross-validation R2 (Q2) and r2

m(LOO)

or the training set, the R2
pred and r2

m(test) values for the test set and
2
m(overall) for the total set [37–39]. The details of the validation tools
re discussed in Supplementary Materials section. For calculation of
2
pred, training set mean has been used as usual. However, addition-

lly, test set mean has been used for calculation of R2
pred (corrected)

s suggested by Schürmann et al. [40].
The final model was also subjected to a randomisation test. In

his test, the toxicity data (Y) are randomly permuted keeping the
escriptor matrix intact, followed by a PLS run. Each randomisation

2 2
nd subsequent PLS analysis generates a new set of R and Q val-
es, which are plotted against the correlation coefficient between
he original Y values and the permuted Y values. The intercepts for
he R2 and Q2 lines in this plot are a measure of the overfit. A model
s considered [41] valid if R2

int < 0.4 and Q 2
int < 0.05. Ta
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ig. 1. PCA score plot of first three components for the standardized topological,
nformation and structural descriptor matrix.

.7. Applicability domain

The applicability domain (AD) of a QSAR is the physico-chemical,
tructural or biological space, knowledge or information on which
he training set of the model has been developed, and for which
t is applicable to make predictions for new compounds [42]. The
urpose of AD is to state whether the model’s assumptions are met.

n general, this is the case for interpolation rather than extrapola-
ion. To investigate the AD of a training set one can directly analyse
roperties of the multivariate descriptor space of the training com-
ounds or, more indirectly, analyse distance (or similarity) metrics.
his can be achieved by different means of feature selection and
uccessive principle components analysis. When a compound is
ighly dissimilar to all compounds of the modeling set, reliable pre-
iction of its activity is unlikely. The concept of AD [43] was used
o avoid such an unjustified extrapolation of activity predictions.

The residuals of Y and X are of diagnostic value for the quality
f the model [44]. Since there are many X-residuals one needs a
ummary for each observation (compound). This is accomplished
y the residual standard deviation (SD) of the X-residuals of the
orresponding row of the residual matrix E. Because this SD is pro-
ortional to the distance between the data point and the model
lane in X-space, it is also often called DModX (distance to the
odel in X-space). Here, X is the matrix of predictor variables, of

ize (N × K), Y is the matrix of response variables, of size (N × M) and
is the (N × K) matrix of X-residuals, N is number of objects (cases,
bservations), k is the index of X-variables (k = 1, 2, . . ., K) and m
s the index of Y-variables (m = 1, 2, . . ., M). A DModX larger than
round 2.5 times the overall SD of the X-residuals (corresponding
o an F-value of 6.25) indicates that the observation is outside the
pplicability domain of the model [44].

. Results and discussion

The principal component analysis (PCA) score plot of the first
hree components of the standardized topological, information and

tructural descriptor matrix shows distribution of the training and
est set compounds in 3D space. It may be noted that the distribu-
ion of the whole dataset into training and test sets has been done
y k-means clustering and not using the PCA score plot. However,

n Fig. 1, the plot shows that each test set compound is located in
aterials 177 (2010) 344–351 347

the close vicinity of at least one training set compound in the 3D
space.

We developed three sets of 6 models, one for each with 2D (73
descriptors), 3D (54 descriptors) and combination of both kinds of
descriptors. Note that log Ko/w and structural parameters were used
in all trials of model development process. As a result total 18 mod-
els are developed with the mentioned chemometric tools. In Table 2
statistical quality of developed models are presented. Based on
external prediction criteria, stepwise regression (model 13) derived
model obtained from combination of 2D and 3D descriptors evolved
as the best model among the 18 models. The developed equation is
as follows:

log
(

1
LC50

)
= 4.851 − 0.313(LUMO) + 27.4(Jurs − FNSA − 3)

− 0.224(Jurs − PNSA − 3) + 0.664(log Ko/w)

+ 57.01(Jurs − FPSA − 3) − 0.168(Jurs − DPSA − 3)

+ 0.132(S ssO) + 0.55(Hbonddonor)

+ 0.181(Dipole−mag) + 0.35(S tsC) + 0.149(S dsN)

− 2.501(Shadow-YZfrac)

ntraining = 222,

R2 = 0.738, Q 2 = 0.703, R2
adj = 0.723, r2

m(LOO) = 0.55,

ntest=75, R2
pred=0.721, r2

m(test)=0.718, r2
m(overall)=0.574 (1)

Eq. (1) could explain 72.3% of the variance (adjusted coefficient of
variation) and could predict 70.3% of the variance (leave-one-out
predicted variance). External predicted variance for Eq. (1) is 72.1%
which is a fairly high value for such a large number of test set com-
pounds (ntest = 75). The corrected R2

pred value, calculated using the
test set mean [40], for Eq. (1) is 0.719.

To check the intercorrelation among the 12 descriptors in
Eq. (1), we checked Pearson correlation matrix by SPSS software
[30]. Table S3 in Supplementary Materials section gives the inter-
correlation (r) data for all the descriptors used in the stepwise
regression equation. Analyzing the matrix we found that Jurs-
DPSA-3 and Jurs-FNSA-3 (r = 0.889), Jurs-DPSA-3 and Jurs-PNSA-3
(r = 0.971), Jurs-PNSA-3 and Jurs-FNSA-3 (r = 0.948) descriptors are
highly correlated. Based on the intercorrelation values Jurs-DPSA-
3 and Jurs-FNSA-3 were omitted. The remaining 10 descriptors
did not exhibit significant intercorrelation among themselves. We
attempted a PLS run using the selected 10 descriptors.

The program SIMCA [32] was used for the partial least squares
(PLS) analysis. PLS is a generalization of regression, which can han-
dle data with numerous independent variables, possibly strongly
correlated and/or noisy [25]. The linear PLS model finds ‘new vari-
ables’ (latent variables (LVs)) that are linear combinations of the
original variables. To avoid overfitting, a strict test for the signifi-
cance of each consecutive LV is necessary in which no new LVs are
added when they become non-significant [25].

Though PLS model was constructed with all 10 selected
descriptors, but subsequently, descriptors with smaller Variable
Importance for the Projection (VIP) values were gradually deleted
until a model with the best leave-one-seventh-out cross-validation
correlation coefficient, Q 2

(1/7), was obtained. Then final PLS model
(model 19) was also run by the program MINITAB [29], which cal-
culates the leave-one-out correlation coefficient, LOO-Q2. External
predictivity was also judged with the test set of compounds by

developed equation. Model 19 [Eq. (2)] is shown below.

log
(

1
LC50

)
= 2.919 + 0.641(log Ko/w)

+0.008(Jurs-PNSA − 3)+6.22(Jurs-FPSA − 3)
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ig. 2. Histogram of VIPs of the descriptors used in the final PLS model (model 19).

−0.281(LUMO) + 0.41 Hbonddonor + 0.473(S tsC)

+0.118(S ssO)

ntraining = 222,

R2 = 0.695, Q 2
LOO = 0.678, Q 2

(1/7) = 0.634,

r2
m(LOO) = 0.67, ntest = 75, R2

pred = 0.741,

r2
m(test) = 0.707, r2

m(overall) = 0.688 (2)

q. (2) involving only 7 descriptors and three latent variables (LVs)
ould predict 67.8% of the variance (leave-one-out predicted vari-
nce). The predicted R2 (R2

pred) value of 0.741 and r2
m(test) value of

.707 of model 19 outperformed the previous best model (model
8). The corrected R2

pred value, calculated using the test set mean

40], for model 19 is 0.735. Also, based on r2
m(overall) value of 0.688,

odel 19 outperformed the model 18. So, based on external and
verall predictivity model 19 is more superior to model 18. Statis-
ical quality of model 19 is presented in Table 2. The values of the
escriptors appearing in Eq. (2) are given in Table S4 in Supplemen-
ary Materials section.

The calculated toxicity of all the chemicals obtained from the
eported Eq. (2) is given in Table S1 in Supplementary Materials sec-

ion, which shows that the calculated toxicity values are quite close
o the observed ones.

The VIPs and coefficients of the original descriptors are pre-
ented as histogram in Figs. 2 and 3, respectively. Hydrophobicity

ig. 3. Histogram of coefficients of the original descriptors used in the final PLS
odel (model 19).
aterials 177 (2010) 344–351

expressed by log Ko/w and electrophilicity depicted by LUMO
proved to be important and favourable features with positive and
negative contribution, respectively. These 2 descriptors exerted sig-
nificant contributions to the model with VIP values of 1.49 and
1.09, respectively. All of the remaining descriptors, i.e., H-bond
donor (structural descriptor), S ssO, S tsC (topological descriptor)
and Jurs-PNSA-3 and Jurs-FPSA-3 (spatial descriptor) have positive
coefficients. According to the VIP values of the descriptors used in
Eq. (2), the descriptors show the following order of importance:

Log Ko/w > LUMO > S ssO > H-bond donor > Jurs-FPSA-
3 > S tsC > Jurs-PNSA-3

Here, we explain the importance of each descriptor with suitable
examples:

(1) According to the VIP values, log Ko/w appeared as the most
significant descriptor for the best model. Thus we can infer
that the partition coefficient (log Ko/w) is the most important
descriptor for the toxicity. The developed model suggests that
higher lipophilicity value influences the toxicity. Compounds
like 2,2′,4,4′,5,5′-hexachloro-1,1′-biphenyl (248), 2,4,5,2′,5′-
PCB (252) and 2,2′,3,3′,4,4′-PCB (253) showed toxicity values
in higher range (8.44, 7.51 and 8.78 respectively) just due to
the high values of log Ko/w (7.62, 6.98 and 7.62 respectively).

On the other hand, compounds like N,N-dimethylformamide
(19) and triethylene glycol (295) have log Ko/w values in the
lower range (−0.93 and −1.75 respectively) and as a result,
the corresponding toxicity values are very low (0.7 and 0.46
respectively).

(2) LUMO is the energy of lowest unoccupied molecular orbital.
This represents the electrophilicity of a molecule. LUMO
has unfavorable contribution towards the toxicity value
as evidenced by the negative regression coefficient. This
characteristic is important in governing the chemical reac-
tivity and properties. Soft electrophiles are associated with
relatively low, or a negative, LUMO energy [45]. The
negative coefficient of LUMO energy in Eq. (2) suggests
that soft electrophilc compounds are more toxic. Com-
pounds like dichlorvos (17), carbon disulfide (25) and
2,4,6-trinitrotoluene (125) have the low values of LUMO (−0.70,
−0.98 and −1.01 respectively; hence, these compounds are
highly electrophilic) resulting in considerable toxicity values
(9.1, 4.56 and 4.39 respectively) though the values of other
descriptors for these compounds are moderate.

(3) Among remaining 5 descriptors, two spatial descriptors com-
bine the shape and electronic information characterizing the
molecules and thus encode features responsible for polar inter-
actions for the toxicity.
(i) Jurs-PNSA-3 is the sum of the products of atomic solvent-

accessible surface areas and partial charges q̄a over all
negatively charged atoms, i.e.,

PNSA3 =
∑

a−
q−

a SA−
a

(ii) Jurs-FPSA-3 descriptor indicates the fractional charged par-
tial positive surface area and is defined as the atomic charge
weighted positive surface area (PPSA3) divided by the total
molecular solvent-accessible surface area (SASA), i.e.,

FPSA3 = PPSA3

SASA
Though both the descriptors have positive coefficients but
the values of Jurs-PNSA-3 and Jurs-FPSA-3 are negative
and positive respectively. So, eventually Jurs-PNSA-3 exerts

negative impact and Jurs-FPSA-3 exerts positive impact on
the model quality. As a result we can conclude that more
is the negatively charged surface area, less is the toxicity.
Compounds like 4-methoxybenzenamine (89), m-toluidine
(108) and carbendazim (234) having comparatively less
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Table 3
Comparison of quality of different models on Daphnia toxicity.

Toxicity endpoint Equation statistics Reference

D. magna 48-h; EC50 (mol/L); (non-polar narcosis) Log EC50 = −0.95(log Ko/w) − 1.32; n = 49, R2 = 0.95, q2 = 0.94, s = 0.34 [46]
D. magna 48-h; EC50 (mol/L); (polar narcotics) Log(1/EC50) = 0.78(log P) + 1.37; n = 21, R2 = 0.896, s = 0.26 [47]
D. magna 48-h; EC50 (mol/L); (immobilization) LogEC50 = −0.321(NOH)2 − 0.869(log Po/w) − 0.494; n = 19, R2 = 0.919, s = 0.270, F = 104 [14]
D. magna 96-h; LC50 (mmol/L) Log(1/C) = −226.250 + 227.538[OXCW(ak,(OECkP2k),CC]; n = 220, R2 = 0.782, s = 0.849, F = 783

(training set), n = 42, R2 = 0.7388, s = 0.941, F = 113 (test set)
[48]

D. magna 48-h; LC50 (mol/L) Log LC50 = −0.748(±0.030)log Ko/w − 2.393(±0.101); n = 193, R2 = 0.76, SE = 0.76, F = 614 [18]
D. magna 48-h; LC50 (mol/L) Eq. (2) of this paper.; ntraining = 222, R2 = 0.695, Q2 = 0.678 (training set); ntest = 75,

R2
pred

= 0.741 (test set)
Present study

(

(

F

Fig. 4. The loading plot of the first two principal components (model 19).

negative values of Jurs-PNSA-3 and comparatively higher
positive values of Jurs-FPSA-3 show high toxicity values
(5.57, 5.17 and 5.54 respectively).

4) Ether linkage expressed by E-state index of fragment –O–
(S ssO) positively influences the toxicity of chemicals. Com-
pounds like malathion (132), diazinon (157) and TEDP (226)
with moderate lipophilicity values (2.29, 3.86 and 3.98 respec-

tively) and low to moderate values of other descriptors show
higher toxicity values (7.36, 8.45 and 9.15 respectively) just due
to higher values of the S ssO descriptor.

5) Acetylenic carbon expressed by E-state index of fragment
–C (S tsC) is responsible for greater toxicity of chemicals.

ig. 6. DModX values of the 75 test set compounds at 95% level for model 19. The thick ho
Fig. 5. Validation of the final PLS model (model 19). Validation plot based on 100
randomization cycles. RY refers to the correlation coefficient of the Y vector (toxicity)
itself.

Compounds like thiocyanic acid methylene ester (230) and
iodopropynyl butylcarbamate (258) with very low values of
other descriptors have high toxicity values (6.25 and 6.85
respectively) due to the corresponding high values of the S tsC
descriptor.
(6) H-bond donor descriptor signifies the number of hydro-
gen bond donor groups. Chemicals containing larger number
of hydrogen bond donor groups show greater toxicity.
Compounds like thiourea (16), methylthiourea (173) and
dithiothreitol (224) have very low lipophilicity values, mod-

rizontal line signifies the critical DModX value (1.646) at the 95% confidence level.
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erate electrophilicity values, less negatively charged surface
areas, no ether linkage and no acetylenic carbon. However, due
to the corresponding high number of hydrogen bond donor
features (4, 3 and 4 respectively), these compounds show mod-
erate toxicity values.

The PLS loading plot for the response variable (toxicity) and the
escriptors included in the final model are shown in Fig. 4. The
oxicity is explained to an extent of 46% by the first PLS compo-
ent and 44% by the second component. LUMO and H-bond donor
ajorly contribute to the features of the first component and sec-

nd component respectively. Log ko/w, S ssO, S tsC, Jurs-PNSA-3
nd Jurs-FPSA-3 share the features of both components.

Analysing Fig. 4 we can infer that electronic characteristics along
ith lipophilicity are playing dominant role for the toxicity of

hemicals against D. magna. As 2D and 3D descriptors increase
redictability of the models when used along with log Ko/w, the elec-
ronic, spatial, structural and topological factors are also found to
e important for the toxicity along with hydrophobicity. It is inter-
sting to note that model 19 shows better internal, external and
verall validation characteristics than those of the models devel-
ped by von der Ohe et al. [18]. Table 3 shows a comparison of the
tatistical quality of Eq. (2) with that of other reported models on
aphnia toxicity [46,47,14,48].

Model 19 was validated using a randomization test through ran-
omly reordering (100 permutations) response data (default [32] is
0) using SIMCA 10.0 [30]. In this test, the toxicity data (Y) are ran-
omly permuted keeping the descriptor matrix intact, followed by
PLS run. Each randomization and subsequent PLS analysis gen-

rates a new set of R2 and Q2 values, which are plotted against
he correlation coefficient between the original Y values and the
ermuted Y values. R2 and Q2 were plotted against the correlation
oefficient of the Y vector itself (RY) yielding intercepts close and
elow zero, respectively, indicating robustness of the model (Fig. 5).
model is considered valid if R2

int < 0.4 and Q 2
int < 0.05. Model 19

s well above the permissible limit indicating that the model is not
btained by chance. Toxicity intercepts values are R2 = 0.0, −0.0089,
2 = 0.0, −0.145.

Fig. 6 represents the residual SD of X-residuals (DModX) of
est set compounds for model 19 (Eq. (2)). At 95% confidence
evel, DModX values of six test compounds are above the crit-
cal value of 1.646. These compounds are 2,4,6-trinitrophenol,
ndosulfan, 2,4,6-trinitrotoluene, chlorothalonil, thiocyanic acid
ethylene ester and acrylonitrile. So, these six test compounds are

utside of the AD of model 19 and their predictions are less reliable.

. Conclusion

An adequate, global and robust PLS model was established for
97 structurally diverse chemicals, providing an informative illus-
ration of the contributing molecular, physicochemical, electronic,
patial properties and structural fragments which are responsible
or the greater toxicity of the diverse organic chemicals. Above
esults suggest that higher lipophilicity and electrophilicity values
ignificantly increase the toxicity. Furthermore, presence of ether
inkage, hydrogen bond donor features and acetylenic carbon and
ess negatively charged surface areas contribute to the toxicity. As
he compounds of the data set are chemically diverse, they also
xpectedly show diversity in their mechanisms of toxic actions
narcotics, reactive chemicals, oxidative phosphorylation uncou-

lers, electrophiles, proelectrophiles, etc.) as discussed in detail in
ef. [45]. The success of the present study is to develop a global PLS
odel (involving 7 descriptors and three latent variables) applica-

le for diverse classes of chemicals, and efficiency of the model
n predicting daphnia toxicity of new chemicals has been ade-

[

aterials 177 (2010) 344–351

quately validated. The QSAR model described in the present paper
for diverse organic chemicals may be useful for ecotoxicological
hazard assessment against D. magna and environmental fate esti-
mation for toxic chemicals in cases such information is not available
in the existing toxicological databases.
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